Sunday, 3 December 2017

Glidande medelvärde och exponentiella utjämning metoder


Exponentiell utjämning förklaras. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. När människor först möter termen Exponentiell utjämning kan de tro att det låter som ett helvete med mycket utjämning. vad som helst utjämning är. De börjar sedan förutse en komplicerad matematisk beräkning som sannolikt kräver en grad i matematik för att förstå, och hoppas att det finns en inbyggd Excel-funktion tillgänglig om de någonsin behöver göra det. Verkligheten med exponentiell utjämning är betydligt mindre dramatisk och mycket mindre traumatisk. Sanningen är att exponentiell utjämning är en mycket enkel beräkning som ger en ganska enkel uppgift. Det har bara ett komplicerat namn eftersom det som tekniskt händer som en följd av denna enkla beräkning är faktiskt lite komplicerad. För att förstå exponentiell utjämning hjälper det till att börja med det allmänna begreppet utjämning och ett par andra vanliga metoder som används för att uppnå utjämning. Vad är utjämning Utjämning är en mycket vanlig statistisk process. I själva verket möter vi regelbundet smidiga data i olika former i våra dagliga liv. Varje gång du använder ett medelvärde för att beskriva något, använder du ett jämnt antal. Om du funderar på varför du använder ett medelvärde för att beskriva något, kommer du snabbt att förstå begreppet utjämning. Till exempel upplevde vi bara den varmaste vintern på rekord. Hur kan vi kvantifiera detta? Nåväl börjar vi med dataset av de dagliga höga och låga temperaturerna för den period som vi kallar Vinter för varje år i inspelad historia. Men det lämnar oss med en massa siffror som hoppar runt ganska lite (det är inte som varje dag i vinter var varmare än motsvarande dagar från alla tidigare år). Vi behöver ett nummer som tar bort allt detta hoppar runt från data så att vi lättare kan jämföra en vinter till nästa. Att hoppa runt i datan kallas utjämning, och i det här fallet kan vi bara använda ett enkelt medel för att uppnå utjämningen. I efterfrågan prognoser använder vi utjämning för att ta bort slumpmässig variation (brus) från vår historiska efterfrågan. Detta gör det möjligt för oss att bättre identifiera efterfrågan mönster (främst trend och säsong) och efterfråganivåer som kan användas för att uppskatta framtida efterfrågan. Bullret i efterfrågan är samma begrepp som den dagliga hoppningen runt temperaturdata. Inte överraskande är det vanligaste sättet att människor tar bort ljud från efterfrågans historia att använda en enkel genomsnittare, mer specifikt, ett glidande medelvärde. Ett rörligt medel använder bara ett fördefinierat antal perioder för att beräkna medelvärdet, och dessa perioder rör sig när tiden går. Till exempel, om jag använder ett 4 månaders glidande medelvärde, och idag är den 1 maj, använder jag ett genomsnitt av efterfrågan som inträffade i januari, februari, mars och april. Den 1 juni kommer jag att använda efterfrågan från februari, mars, april och maj. Viktat glidande medelvärde. Vid användning av ett medel tillämpar vi samma vikt (vikt) på varje värde i datasetet. I det 4 månaders glidande genomsnittet representerade varje månad 25 av glidande medelvärdet. När man använder efterfrågan historia för att projektera framtida efterfrågan (och särskilt framtida trend) är det logiskt att dra slutsatsen att du skulle vilja att nyare historia skulle få större inverkan på din prognos. Vi kan anpassa vår glidande medelberäkning för att tillämpa olika vikter för varje period för att få våra önskade resultat. Vi uttrycker dessa vikter som procentandelar och summan av alla vikter för alla perioder måste öka till 100. Om vi ​​bestämmer att vi vill tillämpa 35 som vikten för närmaste period i vårt 4 månaders vägda glidande medelvärde, kan vi subtrahera 35 från 100 för att hitta att vi har 65 kvar att dela över de andra 3 perioderna. Till exempel kan vi sluta med en vikt på 15, 20, 30 respektive 35 för de fyra månaderna (15 20 30 35 100). Exponentiell utjämning. Om vi ​​går tillbaka till begreppet att applicera en vikt till den senaste perioden (som 35 i föregående exempel) och sprida den återstående vikten (beräknad genom att subtrahera den senaste vikten av 35 från 100 till 65), har vi de grundläggande byggstenarna för vår exponentiella utjämningsberäkning. Den kontrollerande ingången av exponentiell utjämningsberäkningen är känd som utjämningsfaktorn (kallas även utjämningskonstanten). Den representerar väsentligen den viktning som tillämpas på de senaste perioderna efterfrågan. Så där vi använde 35 som viktningen för den senaste perioden i den vägda glidande genomsnittliga beräkningen, kunde vi också välja att använda 35 som utjämningsfaktor i vår exponentiella utjämningsberäkning för att få en liknande effekt. Skillnaden med exponentiell utjämningsberäkning är att istället för att vi måste ta reda på hur mycket vikt som ska tillämpas för varje tidigare period används utjämningsfaktorn automatiskt för att göra det. Så här kommer den exponentiella delen. Om vi ​​använder 35 som utjämningsfaktor kommer vikten av de senaste perioderna att vara 35. Vägningen av de efterföljande senaste perioderna efterfrågar (perioden före senaste) kommer att vara 65 av 35 (65 kommer från att subtrahera 35 från 100). Detta motsvarar 22,75 viktning för den perioden om du gör matematiken. Nästa efterfrågad efterfrågan kommer att vara 65 av 65 av 35, vilket motsvarar 14,79. Perioden före det kommer att vägas som 65 av 65 av 65 av 35, vilket motsvarar 9,61, och så vidare. Och detta går tillbaka genom alla dina tidigare perioder ända till början av tiden (eller den punkt där du började använda exponentiell utjämning för det aktuella objektet). Du tror nog att det ser ut som en hel del matte. Men skönheten i den exponentiella utjämningsberäkning är att istället för att behöva räkna om mot varje tidigare period varje gång du får en ny period efterfråga, använder du helt enkelt utmatningen av exponentiell utjämningsberäkning från föregående period för att representera alla tidigare perioder. Är du förvirrad än? Det här blir mer meningsfullt när vi tittar på den faktiska beräkningen. Vanligtvis hänvisar vi till effekten av exponentiell utjämningsberäkning som nästa prognos för perioden. I verkligheten behöver den ultimata prognosen lite mer arbete, men i den här specifika beräkningen avses det som prognosen. Exponentialutjämningsberäkningen är följande: De senaste perioderna efterfrågas multiplicerat med utjämningsfaktorn. PLUS De senaste perioderna prognosen multipliceras med (en minus utjämningsfaktorn). D senaste perioder kräver S utjämningsfaktorn representerad i decimalform (så 35 skulle representeras som 0,35). F de senaste perioderna prognos (utmatningen av utjämningsberäkningen från föregående period). ELLER (förutsatt en utjämningsfaktor på 0,35) (D 0,35) (F 0,65) Det blir inte mycket enklare än det. Som vi kan se är allt vi behöver för datainmatningar här de senaste perioderna efterfrågan och de senaste perioderna prognostiseras. Vi tillämpar utjämningsfaktorn (viktning) till de senaste perioderna efterfrågar samma sätt som vi skulle i den vägda glidande genomsnittliga beräkningen. Vi applicerar sedan den återstående vikten (1 minus utjämningsfaktorn) till de senaste perioderna. Eftersom de senaste perioderna prognos skapades baserat på tidigare perioder efterfrågan och tidigare prognoser, som baserades på efterfrågan på perioden före det och prognosen för perioden före det, vilket var baserat på efterfrågan på perioden före det och prognosen för perioden före det, vilket var baserat på perioden före det. Jo, du kan se hur alla tidigare perioder efterfrågan är representerade i beräkningen utan att faktiskt gå tillbaka och räkna om någonting. Och det var det som körde den initiala populariteten för exponentiell utjämning. Det var inte för att det gjorde ett bättre jobb med utjämning än viktat glidande medelvärde, det berodde på att det var lättare att beräkna i ett datorprogram. Och för att du inte behövde tänka på vilken viktning som ska ge tidigare perioder eller hur många tidigare perioder du ska använda, som du skulle i viktat glidande medelvärde. Och eftersom det bara lät kallare än det viktade glidande medlet. Det kan faktiskt argumenteras för att det viktiga glidande medlet ger större flexibilitet eftersom du har större kontroll över vikten av tidigare perioder. Verkligheten är att någon av dessa kan ge tillförlitliga resultat, så varför inte gå med enklare och kallare ljud. Exponentiell utjämning i Excel Låt oss se hur det här verkligen skulle se ut i ett kalkylblad med reella data. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. I Figur 1A har vi ett Excel-kalkylblad med 11 veckors efterfrågan och en exponentiellt jämnprognos beräknad från den efterfrågan. Ive använde en utjämningsfaktor på 25 (0,25 i cell C1). Den nuvarande aktiva cellen är Cell M4 som innehåller prognosen för vecka 12. Du kan se i formellistan, formeln är (L3C1) (L4 (1-C1)). Så de enda direkta ingångarna till denna beräkning är de tidigare perioderna efterfrågan (Cell L3), de tidigare perioderna (Cell L4) och utjämningsfaktorn (Cell C1, som visas som absolut cellreferens C1). När vi börjar en exponentiell utjämningsberäkning, måste vi manuellt ansluta värdet för den första prognosen. Så i Cell B4, snarare än en formel, skrev vi bara in efterfrågan från samma period som prognosen. I Cell C4 har vi vår första exponentiella utjämningsberäkning (B3C1) (B4 (1-C1)). Vi kan sedan kopiera Cell C4 och klistra in den i cellerna D4 till M4 för att fylla resten av våra prognosceller. Du kan nu dubbelklicka på någon prognoscell för att se att den är baserad på tidigare perioder förutspådda cellen och de tidigare perioderna kräver cell. Så ärar varje efterföljande exponentiell utjämningsberäkning utgången från den tidigare exponentiella utjämningsberäkningen. Det är hur varje efterfrågad efterfrågan representeras i de senaste perioderna, även om beräkningen inte direkt hänvisar till de tidigare perioderna. Om du vill bli snygg kan du använda Excels spåra prejudikatfunktion. För att göra detta klickar du på Cell M4, sedan på verktygsfältet i fältet (Excel 2007 eller 2010) klickar du på fliken Formler och klickar sedan på Spåra förekomster. Det kommer att dra anslutningsledningar till 1: a nivået av prejudikat, men om du fortsätter att klicka på Spårprecedenter kommer det att dra anslutningslinjer till alla tidigare perioder för att visa de ärftliga relationerna. Nu kan vi se vad exponentiell utjämning gjorde för oss. Figur 1B visar ett linjediagram över vår efterfrågan och prognos. Du kan se hur den exponentiellt släta prognosen avlägsnar det mesta av jaggednessen (hoppar runt) från den veckoslutande efterfrågan, men lyckas ändå att följa det som tycks vara en uppåtgående trend i efterfrågan. Du kommer också märka att den släta prognoslinjen tenderar att vara lägre än efterfrågan. Detta kallas trendslag och är en bieffekt av utjämningsprocessen. Varje gång du använder utjämning när en trend är närvarande kommer din prognos att ligga bakom trenden. Detta gäller för eventuell utjämningsteknik. Faktum är att om vi skulle fortsätta detta kalkylblad och börja skriva in lägre efterfrågningsnummer (vilket gör en nedåtgående trend) så ser du efterfrågan rad och trendlinjen flyttar över den innan du börjar följa den nedåtgående trenden. Det varför jag tidigare nämnde resultatet från exponentialutjämningsberäkningen som vi kallar en prognos, behöver fortfarande lite mer arbete. Det finns mycket mer att prognostisera än att bara utjämna stötarna i efterfrågan. Vi behöver göra ytterligare justeringar för saker som trendlag, säsongshistoria, kända händelser som kan påverka efterfrågan etc. Men allt som ligger utanför ramen för denna artikel. Du kommer sannolikt också att gå in i termer som dubbel exponentiell utjämning och trippel-exponentiell utjämning. Dessa termer är lite vilseledande eftersom du inte omklämmer efterfrågan flera gånger (du kan om du vill, men det är inte meningen här). Dessa termer representerar exponentiell utjämning på ytterligare delar av prognosen. Så med enkel exponentiell utjämning släpper du ut basbehovet, men med dubbel exponentiell utjämning utjämnar du basbehovet plus trenden och med trippel exponentiell utjämning stryker du basbehovet plus trenden plus säsongsmässigheten. Den andra vanligaste frågan om exponentiell utjämning är var får jag min utjämningsfaktor Det finns inget magiskt svar här, du måste testa olika utjämningsfaktorer med dina efterfrågningsdata för att se vad som blir det bästa resultatet. Det finns beräkningar som automatiskt kan ställa in (och ändra) utjämningsfaktorn. Dessa faller under termen adaptiv utjämning, men du måste vara försiktig med dem. Det finns helt enkelt inget perfekt svar och du bör inte blinda genomföra någon beräkning utan noggrann testning och utveckla en grundlig förståelse för vad den beräkningen gör. Du bör också köra scenarier för att se hur dessa beräkningar reagerar på efterfrågningsändringar som för närvarande inte existerar i efterfrågan data du använder för testning. Det dataexempel jag använde tidigare är ett mycket bra exempel på en situation där du verkligen behöver testa några andra scenarier. Det specifika dataexemplet visar en något konsekvent uppåtgående trend. Många stora företag med mycket dyr prognostiseringsprogramvara fick stora problem i det inte så långa förflutet när deras programvaruinställningar som var tweaked för en växande ekonomi inte reagerade bra när ekonomin började stagnera eller krympa. Saker som detta händer när du inte förstår vad dina beräkningar (programvara) faktiskt gör. Om de förstod sitt prognossystem skulle de ha vetat att de behövde hoppa in och ändra något när det var plötsligt dramatiska förändringar i sin verksamhet. Så där har du det förklarat grunderna för exponentiell utjämning. Vill du veta mer om att använda exponentiell utjämning i en faktisk prognos, kolla in min bok Inventory Management Explained. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. Dave Piasecki. är ägare av Inventory Operations Consulting LLC. ett konsultföretag som tillhandahåller tjänster relaterade till lagerhantering, materialhantering och lagerverksamhet. Han har över 25 års erfarenhet av verksamhetshantering och kan nås via sin hemsida (inventarier), där han behåller ytterligare relevant information. Min BusinessExponential utjämning vikter tidigare observationer med exponentiellt minskande vikter för att prognostisera framtida värden. Detta utjämningsschema börjar med att sätta (S2) till (y1), där (Si) står för jämn observation eller EWMA och (y) står för den ursprungliga observationen. Prenumerationerna avser tidsperioderna, (1, 2, ldots,, n). För den tredje perioden, (S3 alfa y2 (1-alfa) S2) och så vidare. Det finns ingen (S1) den släta serien börjar med den släta versionen av den andra observationen. För varje tidsperiod (t) hittas det släta värdet (St) genom att beräkna St alfa (1-alfa) S ,,,,,,, 0 Utvidgad ekvation för (S5) Till exempel är den expanderade ekvationen för den jämnformade värde (S5) är: S5 alfa vänster (1-alfa) 0 y (1-alfa) 1 y (1-alfa) 2 y höger (1-alfa) 3 S2. Illustrerar exponentiellt beteende Detta illustrerar exponentiellt beteende. Vikten, alfa (1-alfa) t) minskar geometriskt, och deras summa är enhet som visas nedan, med hjälp av en egenskap av geometriska serier: alfasumma (1-alfa) i alfas vänstra frac höger 1 - (1-alfa) t. Från den sista formeln kan vi se att summeringsperioden visar att bidraget till det glattade värdet (St) blir mindre vid varje sammanhängande tidsperiod. Exempel på (alfa 0,3) Låt (alfa 0,3). Observera att vikterna (alfa (1-alfa) t) minskar exponentiellt (geometriskt) med tiden. Summan av kvadrerade fel (SSE) 208.94. Medelvärdet av kvadratfel (MSE) är SSE 11 19.0. Beräkna för olika värden av (alfa) MSE beräknades återigen för (alfa 0,5) och visade sig vara 16,29, så i detta fall föredrar vi en (alfa) av 0,5. Kan vi göra det bättre Vi kunde tillämpa den beprövade test-and-error-metoden. Detta är ett iterativt förfarande som börjar med ett intervall av (alfa) mellan 0,1 och 0,9. Vi bestämmer det bästa första valet för (alfa) och sedan söka mellan (alfa - Delta) och (alfa Delta). Vi kan upprepa det här kanske en gång till för att hitta det bästa (alfanumeriska) till 3 decimaler. Nonlinear optimizers kan användas Men det finns bättre sökmetoder, som Marquardt-förfarandet. Detta är en olinjär optimizer som minimerar summan av kvadrater av rester. I allmänhet borde de flesta väl utformade statistiska programmen kunna hitta värdet av (alpha) som minimerar MSE. Provplott som visar utjämnad data för 2 värden av (alfa) Introduktion till ARIMA: icke-säsongsmodeller ARIMA (p, d, q) prognoser ekvation: ARIMA-modeller är i teorin den vanligaste klassen av modeller för prognoser för en tidsserie som kan vara gjord för att vara 8220stationary8221 genom differentiering (om nödvändigt), kanske i samband med olinjära transformationer såsom loggning eller deflatering (om nödvändigt). En slumpmässig variabel som är en tidsserie är stationär om dess statistiska egenskaper är konstanta över tiden. En stationär serie har ingen trend, dess variationer kring dess medelvärde har en konstant amplitud, och det vinklar på ett konsekvent sätt. d. v.s. dess kortsiktiga slumpmässiga tidsmönster ser alltid ut i statistisk mening. Det sistnämnda tillståndet betyder att dess autokorrelationer (korrelationer med sina egna tidigare avvikelser från medelvärdet) förblir konstanta över tiden, eller likvärdigt, att dess effektspektrum förblir konstant över tiden. En slumpmässig variabel i denna blankett kan ses som en kombination av signal och brus, och signalen (om en är uppenbar) kan vara ett mönster av snabb eller långsam mean reversion eller sinusformig oscillation eller snabb växling i tecken , och det kan också ha en säsongskomponent. En ARIMA-modell kan ses som en 8220filter8221 som försöker separera signalen från bruset, och signalen extrapoleras därefter i framtiden för att få prognoser. ARIMA-prognosekvationen för en stationär tidsserie är en linjär (d. v.s. regressionstyp) ekvation där prediktorerna består av lags av de beroende variabla andorlagren av prognosfel. Det vill säga: Förutsatt värdet på Y är en konstant och en viktad summa av ett eller flera nya värden av Y och eller en vägd summa av ett eller flera nya värden av felen. Om prediktorerna endast består av fördröjda värden på Y. Det är en ren autoregressiv (8220self-regressed8221) modell, som bara är ett speciellt fall av en regressionsmodell och som kan förses med standard regressionsprogram. Exempelvis är en första-order-autoregressiv (8220AR (1) 8221) modell för Y en enkel regressionsmodell där den oberoende variabeln bara Y är försenad med en period (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Om en del av prediktorerna är felaktiga, är en ARIMA-modell inte en linjär regressionsmodell, eftersom det inte går att ange 8220last period8217s error8221 som en oberoende variabel: felen måste beräknas periodvis när modellen är monterad på data. Tekniskt sett är problemet med att använda fördröjda fel som prediktorer att modellen8217s förutsägelser inte är linjära funktioner för koefficienterna. även om de är linjära funktioner i tidigare data. Så koefficienter i ARIMA-modeller som innehåller försenade fel måste uppskattas genom olinjära optimeringsmetoder (8220hill-climbing8221) istället för att bara lösa ett system av ekvationer. Akronymet ARIMA står för Auto-Regressive Integrated Moving Average. Lags av den stationära serien i prognosen ekvationen kallas quotautoregressivequot termer, lags av prognosfel kallas quotmoving averagequot termer och en tidsserie som behöver differentieras för att göras stationär sägs vara en quotintegratedquot-version av en stationär serie. Slumpmässiga och slumpmässiga modeller, autoregressiva modeller och exponentiella utjämningsmodeller är alla speciella fall av ARIMA-modeller. En nonseasonal ARIMA-modell klassificeras som en quotARIMA (p, d, q) kvotmodell där: p är antalet autoregressiva termer, d är antalet icke-säsongsskillnader som behövs för stationaritet och q är antalet fördröjda prognosfel i prediksionsekvationen. Prognosekvationen är konstruerad enligt följande. Först, låt y beteckna d: s skillnad på Y. Det betyder: Observera att den andra skillnaden i Y (d2-fallet) inte är skillnaden från 2 perioder sedan. Det är snarare den första skillnaden-av-första skillnaden. vilken är den diskreta analogen av ett andra derivat, dvs den lokala accelerationen av serien i stället för dess lokala trend. När det gäller y. Den allmänna prognostiseringsekvationen är: Här definieras de rörliga genomsnittsparametrarna (9528217s) så att deras tecken är negativa i ekvationen, enligt konventionen införd av Box och Jenkins. Vissa författare och programvara (inklusive R-programmeringsspråket) definierar dem så att de har plustecken istället. När faktiska siffror är anslutna till ekvationen finns det ingen tvetydighet, men det är viktigt att veta vilken konvention din programvara använder när du läser utmatningen. Ofta anges parametrarna av AR (1), AR (2), 8230 och MA (1), MA (2), 8230 etc. För att identifiera lämplig ARIMA-modell för Y. börjar du med att bestämma sorteringsordningen (d) behöver stationera serierna och ta bort säsongens bruttoegenskaper, kanske i kombination med en variationsstabiliserande transformation, såsom loggning eller avflöde. Om du slutar vid denna tidpunkt och förutsäger att den olika serien är konstant, har du bara monterat en slumpmässig promenad eller slumpmässig trendmodell. Den stationära serien kan emellertid fortfarande ha autokorrelerade fel, vilket tyder på att vissa antal AR-termer (p 8805 1) och eller några nummer MA-termer (q 8805 1) också behövs i prognosekvationen. Processen att bestämma värdena p, d och q som är bäst för en given tidsserie kommer att diskuteras i senare avsnitt av anteckningarna (vars länkar finns längst upp på denna sida), men en förhandsvisning av några av de typerna av nonseasonal ARIMA-modeller som vanligtvis förekommer ges nedan. ARIMA (1,0,0) första ordningens autoregressiva modell: Om serien är stationär och autokorrelerad kanske den kan förutsägas som en multipel av sitt eget tidigare värde plus en konstant. Prognosekvationen i detta fall är 8230, som Y är regresserad i sig själv fördröjd med en period. Detta är en 8220ARIMA (1,0,0) constant8221 modell. Om medelvärdet av Y är noll, skulle den konstanta termen inte inkluderas. Om lutningskoefficienten 981 1 är positiv och mindre än 1 i storleksordningen (den måste vara mindre än 1 i storleksordningen om Y är stillastående), beskriver modellen medelåterkallande beteende där nästa period8217s värde bör förutses vara 981 1 gånger som långt ifrån medelvärdet som detta period8217s värde. Om 981 1 är negativ förutspår det medelåterkallande beteende med teckenväxling, dvs det förutspår också att Y kommer att ligga under den genomsnittliga nästa perioden om den är över medelvärdet denna period. I en andra-ordningsautoregressiv modell (ARIMA (2,0,0)) skulle det finnas en Y t-2 term till höger också, och så vidare. Beroende på tecken och storheter på koefficienterna kan en ARIMA (2,0,0) modell beskriva ett system vars medföljande reversering sker på ett sinusformigt oscillerande sätt, som en massans rörelse på en fjäder som utsätts för slumpmässiga stötar . ARIMA (0,1,0) slumpmässig promenad: Om serien Y inte är stillastående är den enklaste möjliga modellen för en slumpmässig promenadmodell, vilken kan betraktas som ett begränsande fall av en AR (1) - modell där den autogegrativa koefficienten är lika med 1, dvs en serie med oändligt långsam medelbackning. Förutsägningsekvationen för denna modell kan skrivas som: där den konstanta termen är den genomsnittliga period-till-period-förändringen (dvs. den långsiktiga driften) i Y. Denna modell kan monteras som en icke-avlyssningsregressionsmodell där första skillnaden i Y är den beroende variabeln. Eftersom den innehåller (endast) en nonseasonal skillnad och en konstant term, klassificeras den som en quotARIMA (0,1,0) modell med constant. quot. Den slumpmässiga walk-without-drift-modellen skulle vara en ARIMA (0,1, 0) modell utan konstant ARIMA (1,1,0) annorlunda första ordningens autoregressiva modell: Om fel i en slumpmässig promenadmodell är autokorrelerade kanske problemet kan lösas genom att lägga en lag av den beroende variabeln till prediktionsekvationen - - ie genom att regressera den första skillnaden av Y på sig själv fördröjd med en period. Detta skulle ge följande förutsägelsesekvation: som kan omordnas till Detta är en första-orders autregressiv modell med en ordning av icke-säsongsskillnader och en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) utan konstant enkel exponentiell utjämning: En annan strategi för korrigering av autokorrelerade fel i en slumpmässig promenadmodell föreslås av den enkla exponentiella utjämningsmodellen. Minns att för några icke-stationära tidsserier (t ex de som uppvisar bullriga fluktuationer kring ett långsamt varierande medelvärde), utförs slumpmässiga promenadmodellen inte lika bra som ett glidande medelvärde av tidigare värden. Med andra ord, istället för att ta den senaste observationen som prognosen för nästa observation, är det bättre att använda ett genomsnitt av de sista observationerna för att filtrera bort bullret och mer exakt uppskatta det lokala medelvärdet. Den enkla exponentiella utjämningsmodellen använder ett exponentiellt vägt glidande medelvärde av tidigare värden för att uppnå denna effekt. Förutsägningsekvationen för den enkla exponentiella utjämningsmodellen kan skrivas i ett antal matematiskt ekvivalenta former. varav den ena är den så kallade 8220error correction8221-formen, där den föregående prognosen justeras i riktning mot det fel som det gjorde: Eftersom e t-1 Y t-1 - 374 t-1 per definition kan det skrivas om som : vilket är en ARIMA (0,1,1) - utan konstant prognosekvation med 952 1 1 - 945. Det innebär att du kan passa en enkel exponentiell utjämning genom att ange den som en ARIMA (0,1,1) modell utan konstant, och den uppskattade MA (1) - koefficienten motsvarar 1-minus-alfa i SES-formeln. Minns att i SES-modellen är den genomsnittliga åldern för data i prognoserna för 1-tiden framåt 1 945. Det betyder att de tenderar att ligga bakom trender eller vändpunkter med cirka 1 945 perioder. Det följer att den genomsnittliga åldern för data i de 1-prognos framåt av en ARIMA (0,1,1) utan konstant modell är 1 (1 - 952 1). Så, till exempel, om 952 1 0,8 är medelåldern 5. När 952 1 närmar sig 1 blir ARIMA (0,1,1) utan konstant modell ett mycket långsiktigt rörligt medelvärde och som 952 1 närmar sig 0 blir det en slumpmässig promenad utan driftmodell. What8217s det bästa sättet att korrigera för autokorrelation: Lägga till AR-termer eller lägga till MA-termer I de tidigare två modellerna som diskuterats ovan fixades problemet med autokorrelerade fel i en slumpmässig promenadmodell på två olika sätt: genom att lägga till ett fördröjt värde av de olika serierna till ekvationen eller lägga till ett fördröjt värde av prognosfelet. Vilket tillvägagångssätt är bäst En tumregel för denna situation, som kommer att diskuteras mer i detalj senare, är att positiv autokorrelation vanligtvis behandlas bäst genom att addera en AR-term till modellen och negativ autokorrelation behandlas vanligtvis bäst genom att lägga till en MA term. I affärs - och ekonomiska tidsserier uppstår negativ autokorrelation ofta som en artefakt av differentiering. (I allmänhet minskar differentieringen positiv autokorrelation och kan även orsaka en växling från positiv till negativ autokorrelation.) Således används ARIMA (0,1,1) - modellen, i vilken skillnad åtföljs av en MA-term, oftare än en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel exponentiell utjämning med tillväxt: Genom att implementera SES-modellen som en ARIMA-modell får du viss flexibilitet. För det första får den uppskattade MA (1) - koefficienten vara negativ. Detta motsvarar en utjämningsfaktor som är större än 1 i en SES-modell, vilket vanligtvis inte är tillåtet med SES-modellproceduren. För det andra har du möjlighet att inkludera en konstant term i ARIMA-modellen om du vill, för att uppskatta en genomsnittlig trendfri noll. ARIMA-modellen (0,1,1) med konstant har förutsägelsesekvationen: Prognoserna från den här modellen är kvalitativt likartade som i SES-modellen, förutom att banan för de långsiktiga prognoserna typiskt är en sluttande linje (vars lutning är lika med mu) snarare än en horisontell linje. ARIMA (0,2,1) eller (0,2,2) utan konstant linjär exponentiell utjämning: Linjära exponentiella utjämningsmodeller är ARIMA-modeller som använder två icke-säsongsskillnader i samband med MA-termer. Den andra skillnaden i en serie Y är inte bara skillnaden mellan Y och sig själv i två perioder, men det är snarare den första skillnaden i den första skillnaden, dvs. Y-förändringen i Y vid period t. Således är den andra skillnaden av Y vid period t lika med (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En andra skillnad av en diskret funktion är analog med ett andra derivat av en kontinuerlig funktion: det mäter kvotccelerationquot eller quotcurvaturequot i funktionen vid en given tidpunkt. ARIMA-modellen (0,2,2) utan konstant förutspår att den andra skillnaden i serien motsvarar en linjär funktion av de två sista prognosfel: som kan omordnas som: där 952 1 och 952 2 är MA (1) och MA (2) koefficienter. Detta är en generell linjär exponentiell utjämningsmodell. väsentligen samma som Holt8217s modell, och Brown8217s modell är ett speciellt fall. Den använder exponentiellt vägda glidande medelvärden för att uppskatta både en lokal nivå och en lokal trend i serien. De långsiktiga prognoserna från denna modell konvergerar till en rak linje vars lutning beror på den genomsnittliga trenden som observerats mot slutet av serien. ARIMA (1,1,2) utan konstant dämpad trend linjär exponentiell utjämning. Denna modell illustreras i de bifogade bilderna på ARIMA-modellerna. Den extrapolerar den lokala trenden i slutet av serien men plattar ut på längre prognoshorisonter för att presentera en konservatismskampanj, en övning som har empiriskt stöd. Se artikeln om varför Damped Trend worksquot av Gardner och McKenzie och artikeln "Rulequot Rulequot" av Armstrong et al. för detaljer. Det är i allmänhet lämpligt att hålla fast vid modeller där minst en av p och q inte är större än 1, dvs försök inte passa en modell som ARIMA (2,1,2), eftersom det här sannolikt kommer att leda till övermontering och quotcommon-factorquot-problem som diskuteras närmare i noterna om den matematiska strukturen för ARIMA-modeller. Implementering av kalkylark: ARIMA-modeller som de som beskrivs ovan är enkla att implementera på ett kalkylblad. Förutsägningsekvationen är helt enkelt en linjär ekvation som refererar till tidigare värden av ursprungliga tidsserier och tidigare värden av felen. Således kan du ställa in ett ARIMA-prognoskalkylblad genom att lagra data i kolumn A, prognosformeln i kolumn B och felen (data minus prognoser) i kolumn C. Förutsättningsformeln i en typisk cell i kolumn B skulle helt enkelt vara ett linjärt uttryck som hänvisar till värden i föregående rader av kolumnerna A och C multiplicerat med lämpliga AR - eller MA-koefficienter lagrade i celler på annat håll på kalkylbladet.

No comments:

Post a Comment